

Derivative-free optimization of composite functions

Jeffrey Larson

Argonne National Laboratory

May 27, 2019

Problem setup

where the objective f depends on the output(s) from a simulation S and a known function h.

Problem setup

where the objective f depends on the output(s) from a simulation S and a known function h.

- Derivatives of S may not be available
- lacktriangle Constraints defining ${\cal D}$ may or may not depend on ${\cal S}$
- The dimension n is small
- Evaluating S is expensive (not using grids or randomized/evolutionary methods)

Computers/Simulations!

Computers/Simulations!

Computers/Simulations!

#21 on TOP500 November 2018

(#6 on TOP500 June 2016)

Opening up the black box

$$f(x) = ||S(x) - T||_2^2 = \sum_{i=1}^p (S_i(x) - T_i)^2$$

Can either have a solver that uses f(x) or $[S_1(x), \ldots, S_p(x)]$.

Opening up the black box

Tuning quadrupole moments for a particle accelerator simulation.

$$f(x) = ||S(x) - T||_2^2 = \sum_{i=1}^p (S_i(x) - T_i)^2$$

Can either have a solver that uses f(x) or $[S_1(x), \ldots, S_p(x)]$.

Emittance minimization

$$\underset{v \in \mathbb{R}^n}{\mathsf{minimize}} \ \epsilon(v)$$

subject to: $v \in \mathcal{D}$

where

$$\epsilon(v) = \sqrt{\langle x(v)^2 \rangle \langle p_x(v)^2 \rangle - \langle x p_x(v) \rangle^2}$$

Emittance minimization

$\underset{v \in \mathbb{R}^n}{\mathsf{minimize}} \ \epsilon(v)$

subject to: $v \in \mathcal{D}$

where

$$\epsilon(v) = \sqrt{\langle x(v)^2 \rangle \langle p_x(v)^2 \rangle - \langle xp_x(v) \rangle^2}$$

Emittance minimization

$$\underset{v \in \mathbb{R}^n}{\text{minimize}} \quad \underset{t}{\text{min}} \, \epsilon(v, t)$$

subject to: $v \in \mathcal{D}$

 $0 \le t \le \overline{t}$,

where

$$\epsilon(v,t) = \sqrt{\langle x(v,t)^2 \rangle \langle p_x(v,t)^2 \rangle - \langle xp_x(v,t) \rangle^2}$$
0.28
0.26
0.26
0.26
0.29
0.29
0.20
0.18
0.20
0.1000 1500 2000

Step number

Exploiting Structure

Nonsmooth, composite optimization

$$\underset{x}{\mathsf{minimize}} f(x) = h(S(x))$$

nonsmooth $h \colon \mathbb{R}^p \to \mathbb{R}$ (with a known structure), smooth $S \colon \mathbb{R}^n \to \mathbb{R}^p$ (expensive to evaluate).

- ▶ Idea: Build p models, one for each component of S. Use model gradients in place of ∇S .
- ▶ Requires a *manifold representation* of *h*.
- **Example:** censored ℓ_1 loss:

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{c_i, S_i(x)\}|$$

Censored ℓ_1 loss

Censored ℓ_1 loss

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

 ρ manifolds

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, ..., p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

 $p \,\, \mathsf{manifolds}$

$$h(y) = ||y||_{\infty} = \max_{i \in \{1,...,p\}} |y_i|$$

2p manifolds

$$h(y) = \|y\|_1 = \sum_{i=1}^p |y_i|$$

2^p manifolds

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1,...,p\}} |y_i|$$

2p manifolds

$$h(y) = \|y\|_1 = \sum_{i=1}^p |y_i|$$

2^p manifolds

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{c_i, y_i\}|$$

 3^p manifolds. If p = 45,

approximately $3\times 10^{21}\ \text{potential}$ manifolds.

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1,...,p\}} |y_i|$$

2p manifolds

$$h(y) = ||y||_1 = \sum_{i=1}^{p} |y_i|$$

2^p manifolds

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{c_i, y_i\}|$$

 3^p manifolds. If p = 45,

approximately $3\times10^{21}\ \text{potential}$ manifolds.

User scripts need to calculate:

$$f(x), S(x), \mathbb{H}(S(x)), \{\nabla h_i(S(x)) : i \in \mathbb{H}(S(x))\}, \{h_i(S(x)) : i \in \mathbb{G}\},\$$

Manifold Sampling

Manifold Sampling

$$g^{k} riangleq extbf{proj}\left(0, extbf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extbf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(S(x^k))} \left\{ \nabla M(x^k) \nabla h_i(S(x^k)) \right\}$$

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(S(x^k))} \left\{ \nabla M(x^k) \nabla h_i(S(x^k)) \right\}$$

$$\mathbb{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(S(y))} \left\{ \nabla M(x^k) \nabla h_i(S(x^k)) \right\}$$

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(S(x^k))} \left\{ \nabla M(x^k) \nabla h_i(S(x^k)) \right\}$$

or

$$\mathbb{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(S(y))} \left\{ \nabla M(x^k) \nabla h_i(S(x^k)) \right\}$$

Define the smooth master model $m_k^f : \mathbb{R}^n \to \mathbb{R}$ (with gradient g^k) and obtain step by (approximately) solving

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

Better trust-region subproblem?

Instead of solving

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

How about

$$\underset{s}{\text{minimize }} h(M(x^k + s))$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

Better trust-region subproblem?

Instead of solving

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

How about

minimize
$$h(M(x^k + s))$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

For censored ℓ_1 loss:

$$\begin{aligned} & \underset{s}{\text{minimize}} & \sum_{i=1}^{p} |d_i - \max\{c_i, q_i(x)\}| \\ & \text{subject to: } s \in \mathcal{B}(0, \Delta_k) \end{aligned}$$

Better trust-region subproblem?

Instead of solving

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

How about

minimize
$$h(M(x^k + s))$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

For censored ℓ_1 loss:

minimize
$$\sum_{i=1}^{p} |d_i - \max\{c_i, q_i(x)\}|$$
 subject to: $s \in \mathcal{B}(0, \Delta_k)$

Better trust-region subproblem?

Instead of solving

$$\underset{s}{\text{minimize}} \ m_k^f(x^k + s)$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

How about

$$\min_{s} \inf (M(x^k + s))$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

For censored ℓ_1 loss:

$$\underset{s}{\text{minimize}} \sum_{i=1}^{p} |d_i - \max\{c_i, q_i(x)\}|$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

Question

Best method for solving composite nonsmooth quadratic problems?

Thanks

Questions?

 ${\tt jmlarson@anl.gov}$

